Управление образования администрации Гурьевского муниципального округа муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа № 11»

Принята на заседании Педагогического совета МАОУ «СОШ №11» от «Ӈ҇҆ ② ፆፆ 20ዺ 央 Протокол № 1

Дополнительная общеобразовательная общеразвивающая программа естественнонаучной направленности «Робототехника»

Стартовый уровень

Возраст обучающихся: 10-14 лет

Срок реализации: 3 год

Автор-составитель: Юдин Евгений Александрович, учитель информатики

СОДЕРЖАНИЕ

РАЗДЕЛ 1. КОМПЛЕКС ОСНОВНЫХ ХАРАКТЕРИСТИК ПРОГРАММЫ	3
1.1. Пояснительная записка	3
1.2. Цель и задачи программы	5
1.3. Содержание программы	7
13.1. Учебно-тематический план	7
1.3.2. Содержание учебно-тематического плана	8
1.4. Планируемые результаты	24
РАЗДЕЛ 2. КОМПЛЕКС ОРГАНИЗАЦИООНО-ПЕДАГОГИЧЕСКИХ	
УСЛОВИЙ	31
2.1. Календарный учебный график	31
2.2. Условия реализации программы	31
2.3. Формы аттестации/контроля	33
2.5. Методические материалы	33
2.6. Список питературы	37

РАЗДЕЛ 1. КОМПЛЕКС ОСНОВНЫХ ХАРАКТЕРИСТИК ПРОГРАММЫ

1.1.Пояснительная записка

общеразвивающая

программа

общеобразовательная

Дополнительная

«Робототехника» имеет естественнонаучную, техническую направленность и реализуется в рамках «Точки роста» национального проекта «Образование». Дополнительная общеобразовательная общеразвивающая программа «Робототехника» разработана в соответствии со следующими нормативноправовыми документами:

- ▶ Федеральный Закон Российской Федерации от 29.12.2012 № 273 «Об образовании в Российской Федерации» (с изменениями и дополнениями); изменения в Федеральный закон «Об образовании в Российской Федерации» 273-ФЗ в части определения содержания воспитания в образовательном процессе с 01.09.2020;
- Указа Президента Российской Федерации «О национальных целях развития Российской Федерации на период до 2030 года», определяющего одной из национальных целей развития Российской Федерации предоставление возможности для самореализации и развития талантов;
- ▶ Приказ Министерства просвещения РФ от 9 ноября 2018 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Приказ Министерства образования и науки Российской Федерации от 23 августа 2017 г. № 816 «Порядок применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ» (зарегистрирован Министерством юстиции Российской Федерации от 18 сентября 2017 г., регистрационный № 48226);
- Концепция развития дополнительного образования детей в РФ (Распоряжение правительства РФ от 04.09.2014 № 1726);

- ➤ Письмо Минобрнауки России от 18.11.2015 №09-3242. «Методические рекомендации по проектированию дополнительных общеразвивающих программ» (включая разноуровневые программы); о
- ▶ Постановление Главного государственного санитарного врача Российскоц Федерации от 28.09.2020 г. 28 г. Москва "06 утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;

Актуальность программы

Сегодня весомое значение приобретает образовательная робототехника как новая технология обучения и эффективный инструмент подготовки инженерных кадров современной России.

Актуальность программы внеурочной деятельности «Робототехника» состоит в том, что она предназначена для формирования у обучающихся основной школы устройстве представления о мире техники, конструкций, целостного механизмов и машин, их месте в окружающем мире. Реализация данной программы позволяет стимулировать интерес и любознательность, развивать способности к решению проблемных ситуаций, умению исследовать проблему, анализировать имеющиеся ресурсы, выдвигать идеи, планировать решения и реализовывать их, расширить технический и математический словари ученика, формировать устойчивый интерес к поисковой творческой деятельности, повысить мотивацию у обучающихся к получению технического образования. Кроме этого, занятия робототехникой помогают развитию коммуникативных навыков обучающихся за счет активного взаимодействия детей в ходе групповой проектной деятельности.

Изучение программы предусмотрено за счет часов по внеурочной деятельности. Продолжительность одного занятия составляет 1 час, 1 раз в неделю. Количество часов на учебный год: 34 часа. Срок реализации программы составляет 3 года. Всего за 3 года: 102 часа.

Возраст детей: 10-14 лет.

Группы первого года обучения комплектуются из учащихся 5 класса (10-11 лет).

Группы второго года обучения комплектуются из учащихся, прошедших обучение по программе первого года и учащихся 6 класса (11-12 лет).

Группы третьего года обучения комплектуются из учащихся, прошедших обучение по программе второго года и учащихся 7 класса (13 -14 лет).

Форма и режим занятий

Основной формой проведения занятия является работа в группе, команде. Наряду с групповой формой работы во время занятий осуществляется индивидуальный И дифференцированный подход К обучающимся. Индивидуальное освоение ключевых способов деятельности происходит на основе системы заданий и практических предписаний, изложенных в Интернетресурсах и учебном практикуме для школьников (см. литература для обучающихся). Большинство заданий выполняется с помощью роботов, персонального компьютера и программного обеспечения, входящего в комплект модели робота. На определенных этапах обучения учащиеся объединяются в группы, состав групп мобильный, не более 5-7 человек. Выполнение творческих проектов завершается публичной защитой результатов с представлением функций и практической значимости созданного робота и презентацией этапов проектирования в Power Point.

1.2.Цель и задачи программы

Цель образовательной программы «Робототехника»: развитие способностей технического творчества у обучающихся посредством конструкторской и проектной деятельности.

Задачи программы:

Личностные:

- воспитать у детей чувство патриотизма и гражданственности на примере развития истории российской технической науки; - воспитать высокую культуру труда обучающихся;

- сформировать качества творческой личности с активной жизненной позицией;
- сформировать навыки современного организационно-экономического мышления, обеспечивающие социальную адаптацию в условиях рыночных отношений;
- ранняя ориентация на инновационные технологии и методы организация практической деятельности в сферах общей кибернетики и роботостроения;
- воспитывать ценностное отношение к предмету информатика, взаимоуважение друг к другу, эстетический вкус, бережное отношение к оборудованию и технике, дисциплинированность.
- формировать творческую личность с установкой на активное самообразование.

Метапредметные:

- развивать мыслительные операции: анализ, синтез, обобщения, сравнения, конкретизация; алгоритмическое и логическое мышление, устную и письменную речь, память, внимание, фантазию;
- развить у детей элементы изобретательности, технического мышления и творческой инициативы; развить глазомер, творческую смекалку, быстроту реакции;
- ориентировать обучающихся на использование новейших технологий и методов организации практической деятельности в сфере моделирования;
- развить способности программировать;
- приобретение навыков коллективного труда;
- организация разработок научно-технологических проектов. Образовательные (предметные):
- познакомить обучающихся со спецификой работы над различными видами моделей роботов на примерах Lego
- научить приемам построения моделей роботов из Лего-конструкторов;
- научить различным технологиям создания роботов, механизмов;
- научить добиваться высокого качества изготовленных моделей (добротность, надежность, привлекательность); научить составлять программы для роботов различной сложности.

1.3. Содержание программы

1.3.1. Учебно-тематический план:

Первый год обучения (5 класс)

№	Раздел	Кол-во	Теория	Практика
		часов		
1	Вводное занятие	1	1	0
2	Конструктор Lego Mindstorms EV3	2	1	1
3	Введение в программирование	16	3	13
4	Конструирование	5	1	4
5	Соревнования	3	0	3
6	Проектная деятельность	6	1	5
7	Заключительное занятие	1	0,5	0,5
	Всего	34	7,5	26,5

Второй год обучения (6 класс)

№	Раздел		Кол-во	Теория	Практика
			часов		
1	Вводное занятие		1	1	0
2	Программирование		7	2	5
3	Конструирование		11	0	11
4	Соревнования		7	1	6
5	Проектная деятельность		7	0	7
6	Заключительное занятие		1	0	1
		Всего	34	4	30

Третий год обучения (7 класс)

№	Раздел		Кол-во	Теория	Практика
			часов		
1	Вводное занятие		1	1	0
2	Программирование		7	2	5
3	Конструирование		7	0	7
4	Соревнования		5	1	4
5	Проектная деятельность		13	0	13
6	Заключительное занятие		1	0	1
		Всего	34	4	30

1.3.2 Содержание программы

Конструирование – 25 часов

История развития робототехники. Введение понятия «робот». Поколения роботов. Классификация роботов. Значимость робототехники в учебной дисциплине информатика. Основы конструирования роботов. Особенности конструирования Lego-роботов. Стандартные модели Lego Mindstorms.

Знакомство с различными видами конструкторов. Правила работы с конструктором Lego. Знакомство с конструктором «Lego Mindstorms EV3». Названия и назначения деталей: блок питания, микрокомпьютер, моторы, провода, балки, пластины, колеса, оси, соединительные элементы. Изучение типовых соединений деталей. Конструкция. Основные свойства конструкции при ее построении. Построение моделей роботов по технологическим картам.

Знакомство с датчиками. Датчики и их параметры: датчик касания; датчик освещенности, датчик звука, ультразвуковой датчик, датчик цвета. Способы присоединения датчиков к роботу.

Зубчатые передачи, их виды. Различные виды зубчатых колес: шестеренки. Применение зубчатых передач в технике. Технология повышения

и понижения скорости. Виды ременных передач. Применение и построение ременных передач в технике.

Программирование – 30 часов

Интерфейс EV3. Набор Lego Mindstorms. Подключение EV3. Датчики и интерактивные сервомоторы. Калибровка датчиков.

Направляющая и начало программы. Палитры блоков. Блоки стандартной палитры EV3: блоки движения, звука, дисплея, паузы. Блок условия. Работа с условными алгоритмами. Блок цикла. Работа с циклическими алгоритмами.

Математические операции в EV3. Логические операции в EV3.

Соревнования – 15 часов

Кольцевые автогонки. Движение робота по хлопку. Движение робота по траектории. Стартовая калитка. Управление электромобилем. Телеграф. Конкурс танцев. Перетягивание канатов.

Проектная деятельность – 26 часов

Что такое проект. Виды проектов. Этапы работы над проектом.

Требования к проекту.

Темы мини-проектов представлены в календарно-тематическом планировании по каждому году обучения.

<u>Проекты-проблемы:</u> Парковка. Игрушка Валли. Робот-погрузчик. Чертежная машина. Сушилка для рук. Светофор. Секундомер. Стартовая система. Приборная панель. Лифт. Стиральная машина. Послушный домашний помощник. Робот-газонокосильщик.

Направления тем для творческих проектов: охрана окружающей среды, роботы-помощники, роботы в космосе, роботы и туризм, роботы на заводе.

Календарно-тематическое планирование программы «Робототехника» 5 класс

№	Тема занятия	Содержание занятия	Формы проведения
2	Вводное занятие. Введение в робототехнику Робот EV3	Правила поведения в кабинете информатики. Инструктаж по технике безопасности. Робототехника, робот, важные характеристики роботов. Правила работы с конструктором.	Беседа, демонстрация, инструктаж
2	FOOOT EVS	Робот Lego Mindstorms. Структура робота. Схема сборки (подключения). Сборочный конвейер. Модульное производство. Культура производства.	Практикум
3	Робототехника и ее законы	Робототехника и ее законы. Передовые направления в робототехнике. Язык визуального программирования. Программа для управления роботом	Беседа, практикум
4	Среда программирования	Графический интерфейс пользователя. Проект «Незнайка». Первые ошибки. Параллельное программирование	Практикум, мини-проект
5	Искусственный интеллект	Тест Тьюринга и премия Лёбнера. Искусственный интеллект. Интеллектуальные роботы. Поколения интеллектуальных роботов. Элементы, необходимые для интеллектуальных роботов. Справочные системы. Исполнительное устройство. Блок «Движение». Проект «Первые исследования роботов»: определение соответствия градусов оборота колеса	Беседа, мини- проект, эксперимент

		и пройденного расстояния, определение скорости движения робота, определение настроек для разворота робота на месте.	
6	Роботы и эмоции	Эмоциональный робот. Блок «Экран», блок «Звук». Основные настройки команд отображения информации на экране робота и воспроизведения роботом звуков. Проект «Встреча». Программирование эмоций у робота.	Практикум, мини-проект
7	Роботы и эмоции	Конкурентная разведка. Блок «Ожидание». Основные настройки блока. Проект «Разминирование»	Практикум, мини-проект
8	Имитация	Тренажеры. Имитаторы. Симуляторы. Роботы— симуляторы. Алгоритм. Линейный алгоритм (композиция). Свойства алгоритма. Система команд исполнителя. Имитация поведения. Проект «Выпускник»	Практикум, мини-проект
9	Звуковые имитации	Звуковой редактор и звуковой конвертер. Звуковые эффекты. Проект «Послание». Проект «Пароль и отзыв»	Практикум, мини-проекты

№	Тема занятия	Содержание занятия	Формы
			проведения
10	Космические	Космонавтика. История космонавтики. Национальные космические	Демонстрация,
	исследования	программы. Роботы в космосе. Планетоходы. Проект «Первый спутник».	практикум, мини-
		Проект «Живой груз»	проекты
11	Космические	Исследования Луны. Луноход. Гравитационный маневр. Проект «Обратная	Практикум,
	исследования	сторона Луны»	мини-проекты
12	Концепт-кары	Что такое концепт-кар. Цели создания концепт-каров. Независимые	Беседа,
		двигатели робота. Электромобили. Минимальный радиус поворота, его	практикум,
		нахождение. Как может поворачивать робот. Настройки блока «Движение»	работа в сети
		для поворотов	Интернет: поиск
			информации
13	Концепт-кары	Кольцевые автогонки. Траектория движения	Практикум,
			соревнования
14	Парковка в городе	Плотность автомобильного парка. Проблема парковки в мегаполисе.	Решение задач,
		Автоматические парковки. Проект «Парковка»	практикум
15	Парковка в городе	Проект «Парковка»	Проект -
	1 P • M •		проблема

1.0	Моторы для	Электродвигатель. Сервопривод. Тахометр. Оптический энкодер. Блоки	Беседа,
16	роботов	управления «Математика», «Датчик оборотов», «Число в Текст» Проект	практикум,
		«Тахометр». Коммутатор данных	мини-проект
17	Компьютерное	Модель. Моделирование. Что можно моделировать. Цифровой дизайнер. 3D-	Беседа,
	моделирование	модели	демонстрация
18	Компьютерное	Создание трехмерной модели робота	Моделирование
	моделирование		на компьютере
19	Правильные	Правильные многоугольники. Углы правильных многоугольников. Квадрат.	Решение задач,
	многоугольники	Блок «Цикл». Проект «Квадрат»	мини-проекты
20	Пропорция	Метод пропорции. Движение робота вдоль сторон правильных	Решение задач,
		многоугольников. Проект «Пентагон». Проект «Пчеловод»	мини-проекты,
			соревнование
21	Все есть число	Цикл. Итерация. Условия выхода из цикла. Магия чисел. Нумерология.	Беседа,
		Тетрактис. Движение робота по траектории восьмерки	практикум
22	Вспомогательные	Вложенные циклы. Вспомогательные алгоритмы. Мой блок. Проект	Практикум,
	алгоритмы	«Правильный тахометр»	мини-проект
23	Органы чувств	Органы чувств человека. Восприятие и представление. Чувственное	Мини-проект,
	робота	познание. Датчики. Датчик звука. Движение робота по громкому хлопку.	соревнование

		Проект «Инстинкт самосохранения»	
24	Органы чувств робота	Первый автоответчик. Проект «Автоответчик»	Мини-проект
25	Все в мире	Как измерить звук. Беллы. Децибеллы. Проценты от числа. Проект	Практикум,
	относительно	«Измеритель уровня шума». Конкатенация	решение задач,
			мини-проект
26	Военные роботы	Новинки вооружений. Блок «Отправить сообщение». Блок «Получить	Демонстрация,
		сообщение». Робот-передатчик и робот-приемник. Соединение двух роботов	практикум, мини-
		в единую систему. Проект «Система акустической разведки». Обмен	проект (в парах)
		информацией. Коммуникация	
27	Описание	Военная промышленность. Военно-промышленный комплекс России.	Беседа,
	процессов	Конверсия. Наблюдение процессов во времени. Построение графиков.	практикум
	1 ,	Координаты на плоскости. Координаты на экране робота. Режимы блока	
		«Экран». Проект «Домашний шумомер»	
28	Безопасность	Третье воскресенье ноября. Дорожно-транспортные происшествия	Работа в сети
	дорожного	(статистика). Датчик освещенности. Зависимость скорости движения от	Интернет,
	движения	показаний датчика освещенности. Проект «Дневной автомобиль»	эксперимент,
			мини-проект

29	Безопасность	Потребительские свойства товара. Условный оператор (альтернатива). Блок	Мини-проекты
	дорожного	«Переключатель». Проект «Безопасный автомобиль». Проект	
	движения	«Трехскоростное авто». Проект «Ночная молния»	
30	Игрушка Валли	Как работать над проектом. Этапы работы над проектом. Планирование.	Индивидуальный
31		Анализ. Проверка. Обобщение. Описание модели: по представленным	проект- проблема
		изображениям и видео создать робота для уборки мусора	
32	Творческий	Выбор темы, самостоятельная работа над проектом	Творческая
33	проект		работа
34	Заключительное	Защита проектов, оформление личных коллекций проектов	Выставка
	занятие		роботов

Календарно-тематическое планирование программы «Робототехника» 6 класс

№	Тема занятия	Содержание занятия	Формы проведения
1	Вводное занятие	Правила поведения в кабинете информатики. Инструктаж по технике	Беседа,
		безопасности. Робототехника, робот, важные характеристики роботов.	инструктаж
		Правила работы с конструктором.	
2	Фотометрия	Освещенность. Один люкс. Таблица освещенности	Практикум,
	101011011	Проект «Режим дня»	мини-проект
3	Фотометрия	Проект «Главное – результат»	Мини-проекты
	4 OTOMOTPHA	Проект «Измеритель освещенности»	
4	Нажми на кнопку	Тактильные ощущения. Датчик касания. Способы использования	Практикум,
		датчиков. Проект «Система автоматического контроля дверей»	мини-проект
5	Нажми на кнопку	Проект «Перерыв 15 минут». Проект «Кто не работает – тот не ест»	Мини-проекты
6	Сложные проекты	Этапы работы над проектом. Проект «Система газ - тормоз»	Беседа, проект-проблема
7	Сложные проекты	Реализация проекта «Система газ - тормоз»	Проект-проблема
8	Системы	Язык общения системы «человек-компьютер». Компьютерные	Работа в сети
	перевода	переводчики	Интернет: онлайн
			переводчики

9	Научный метод	Цвет для робота. Научный метод.	Беседа,
	познания	Определение цвета поверхности по показаниям датчика. Научный метод в	демонстрация,
		исследовании	эксперимент
10	Симфония цвета	Частота звука. Проект «Симфония цвета»	Практикум,
		Соответствие нот и звуковых частот. Робот, проигрывающий	мини-проект
		мелодию по нотам	
11	Число «пи»	Окружность. Радиус. Диаметр. Измерение диаметра колеса.	Мини-проект,
		Проект «Ищем взаимосвязь величин»	эксперимент
12	Число «пи»	Число «пи». Проект «Робот-калькулятор»	Практикум,
			решение задач
13	Измеряем	Курвиметр и одометр. Математическая модель одометра.	Практикум,
	расстояние	Модель курвиметра. Проект «Одометр»	мини-проект
14	Время	Секунда. Таймер. Проект «Секундомеры»	Практикум,
			мини-проект
15	Система	Проект «Стартовая калитка»	Мини-проект,
16	спортивного	Проект «Самый простой хронограф»	соревнование
	хронометража		команд
17	Скорость	Скорость. Спидометр. Скорость равномерного движения.	Беседа,
		Скорость неравномерного движения. Зависимость скорости от	эксперименты
		мощности мотора.	

18	Скорость	Проект «Спидометр»	Мини-проект
19	Где черпать	Бионика. Датчик ультразвука. Проект «Дальномер» Проект «Робот-	Практикум,
	вдохновение	прилипала»	мини-проект
20	Где черпать	Проект «Соблюдение дистанции»	Проект-
	вдохновение	Проект «Охранная система»	проблема
21	Изобретательство	Терменвокс. Проект «Терменвокс»	Практикум,
	•		мини-проект
22	Изобретательство	Проект «Умный дом»	Мини-проект
23	Система подсчета	Подсчет посетителей. Переменные.	Решение задач,
	посетителей	Проект «Создаем переменную». Проект «Считаем посетителей».	мини-проекты
24	Система	Проект «Счастливый покупатель»	Мини-проект
	подсчета		
	посетителей		
25	Система подсчета	Проект «Проход через турникет»	Практикум,
	посетителей	Программирование робота с использованием переменных	мини-проект
26	Программный	Как из программы сделать программный продукт. Свойства математических	Практикум,
	продукт	действий. Вспомогательная переменная. Сравнение	решение задач
27	Программный	Проект «Управление электромобилем». Баг	Соревнование
	продукт		команд

28	Кодирование	Код и кодирование. Графы и деревья. Борьба с ошибками при передаче.	Мини-проект
		Проект «Телеграф»	(работа в
			группах)
29	Робот-погрузчик	Описание модели: робот должен стартовать из исходной позиции, поднять	Проект-
30		груз в точке А, перенести его по маршруту в точку В, затем опустить его и	проблема
		вернуться в исходную позицию.	
31	Чертежная	Описание модели: робот должен рисовать при помощи карандаша различные	Проект-
	машина	фигуры.	проблема
32	Творческий	Этапы работы над проектом. Самостоятельная работа над проектом	Творческая
33	проект		работа
34	Заключительное	Защита проектов, оформление личных коллекций проектов	Выставка
	занятие		роботов

Календарно-тематическое планирование программы «Робототехника» 7 класс

№	Тема занятия	Содержание занятия	Формы проведения
1	Вводное занятие	Инструктаж по технике безопасности. Робототехника, робот, важные характеристики роботов. Правила работы с конструктором. Как работать над проектом. Этапы работы над проектом.	Беседа, инструктаж, демонстрация
2	Механические передачи	Механические передачи. Понижающие и повышающие передачи. Зубчатые передачи. Проект «Передаточные отношения»	Беседа, практикум, эксперименты
3	Механические передачи	Математическая модель одометра для работы с КПП. Проект «Спидометр для работы с КПП». Проект «Мгновенная скорость»	Практикум, мини-проекты
4	Золотое правило механики	Проект «Перетягивание каната». Проект «Максимальный груз». Точность сервомотора	Соревнование, эксперимент
5	Управление	Системы управления. Виды систем управления. Проект «Gamepad»	Беседа, практикум, мини- проект
6	Импровизация	Импровизация и робот. Блок «Случайное число». Проект «Игра в кости»	Практикум, мини-проект

7	Импровизация	Блок «Движение». Проект «Конкурс танцев». Множественный	Практикум,
		выбор	соревнование
			команд
8	Промышленные	Роботы в промышленности. Алгоритм отслеживания границы. Проект	Практикум,
	роботы	«Движение по линии». Проект «Быстрее, еще быстрее»	мини-проекты
9	Промышленные	Проект «Используем второй датчик». Творческий проект «Гараж	Мини-проект,
	роботы	будущего»	творческая
	r		работа
10	Автоматический	Автоматический транспорт. Персональный автоматический транспорт (ПАТ)	Работа в сети
	транспорт		Интернет
11	Автоматический	Проект «Кольцевой маршрут»	Мини-проект
	транспорт		
12	Персональные	Cybiko. Персональные сети. Настройка Bluetooch. Проект «Экипаж лунохода»	Практикум,
	сети		мини-проект
13	Профессия -	Данные, информация, знания. Путь к знаниям. Выбор профессии	Беседа,
	инженер		тестирование
14	Сушилка для рук	Описание модели: наличие светового датчика, который включает вентилятор	Проект-
15		при обнаружении рук и выключает его через 5 секунд (экономия энергии)	проблема

16	Светофор	Описание модели: при нажатии на кнопку загораются последовательно цвета	Проект-
17		светофора с разной продолжительностью горения, имеется переключатель для	проблема
		работы светофора ночью	
18	Секундомер	Описание модели представлено в виде схемы алгоритма.	Проект-
19	J 1		проблема
20	Стартовая	Описание системы представлено в виде общей схемы алгоритма.	Проект-
21	система		проблема
22	Приборная	Описание модели: панель содержит три устройства – одометр, тахометр,	Проект-
23	панель	спидометр.	проблема
24	Лифт	Описание модели: подъемные механизмы	Проект-
25	1		проблема
26	Стиральная	Описание модели: блок управления машиной должен содержать кнопки	Проект-
27	машина	вкл/выкл., мотор вращения барабана, индикаторы процесса стирки	проблема
28	Послушный	Описание модели: робот должен ходить только там, где ему разрешили (он	Проект-
29	домашний	самостоятельно ищет черную линию и двигается по ней)	проблема
	помощник		
30	Робот-	Описание модели: указать роботу границы лужайки и научить его объезду	Проект-
31	газонокосильщик	препятствий	проблема
32	Творческий	Выбор темы, разработка проекта	Творческая
33	проект		работа

34	Заключительное	Защита проектов, оформление личных коллекций в единую коллекцию	Выставка
	занятие		роботов

1.4. Планируемые результаты

Личностными результатами изучения программы «Робототехника» является формирование следующих умений:

- ✓ формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на база ориентирования в мире профессий и профессиональных предпочтений с учетом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развития опыта участия в социально значимом труде;
- ✓ формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно- исследовательской, творческой и других видах деятельности.

Метапредметными результатами изучения программы «Робототехника» являются:

- ✓ умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- ✓ умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения;
- ✓ умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
- ✓ владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- ✓ умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в

группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение;

 ✓ формирование и развитие компетентности в области использования информационно-коммуникационных технологий.

Универсальные учебные действия (УУД):

Познавательные УУД

Обучающий научится:

- ✓ конструировать по условиям, заданным учителем, по образцу, по чертежу, по заданной схеме и самостоятельно строить схему;
- ✓ ориентироваться в своей системе знаний: отличать новое от уже известного;
- ✓ перерабатывать полученную информацию: делать выводы в результате совместной работы, сравнивать и группировать предметы и их образы;
- ✓ основам реализации проектно-исследовательской деятельности;
- ✓ проводить наблюдение и эксперимент под руководством учителя;
- ✓ осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета.

Регулятивные УУД

Обучающийся научится:

- ✓ целеполаганию, включая постановку новых целей, преобразование практической задачи в познавательную;
- ✓ самостоятельно анализировать условия достижения цели на основе учета выделенных учителем ориентиров действия в новом учебном материале;
- ✓ планировать пути достижения целей;
- ✓ устанавливать целевые приоритеты;

- ✓ уметь самостоятельно контролировать свое время и управлять им;
- ✓ принимать решения в проблемной ситуации на основе переговоров;
- ✓ осуществлять контроль качества результатов собственной практической деятельности.

Коммуникативные УУД

Обучающийся научится:

- ✓ учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве;
- ✓ формулировать собственное мнение и позицию, аргументировать и координировать ее с позициями партнеров в сотрудничестве при выработке общего решения в совместной деятельности;
- ✓ устанавливать и сравнивать разные точки зрения, прежде чем принимать решение и делать выбор;
- ✓ аргументировать свою точку зрения, спорить и отстаивать свою позицию не враждебным для оппонентов образом;
- ✓ задавать вопросы, необходимые для организации собственной деятельности и сотрудничества с партнером;
- ✓ уметь работать над проектом в команде, эффективно распределять обязанности.

Предметными результатами изучения программы «Робототехника» является формирование следующих знаний и умений:

Знать:

- основные понятия, использующие в робототехнике: микрокомпьютер, датчик, сенсор, порт, разъем, ультразвук, USB-кабель, интерфейс, иконка, программное обеспечение, меню, подменю, панель инструментов;
- виды конструкций: однодетальные и многодетальные, неподвижное соединение деталей;
- конструктивные особенности различных моделей, сооружений и механизмов;
- основные приемы конструирования роботов и управляемых устройств;

- технологическую последовательность изготовления несложных конструкций;
- интерфейс программного обеспечения Mindstorms EV3;
- правила безопасного поведения и гигиены при работе с компьютером.

Уметь:

- определять, различать и называть детали конструктора;
- самостоятельно определять количество деталей в конструкции моделей;
- создавать реально действующие модели роботов при помощи специальных элементов по разработанной схеме, по собственному замыслу;
- создавать программы на компьютере для различных роботизированных устройств, корректировать программы при необходимости;
- демонстрировать технические возможности роботов;
- самостоятельно решать технические задачи в процессе конструирования роботов (планирование предстоящих действий, самоконтроль, применять полученные знания, приемы и опыт конструирования с использованием специальных элементов, и других объектов и т.д.).

Обучающиеся, освоившие программу первого года обучения

должны знать:

- ✓ правила техники безопасности при работе с конструктором и компьютером;
- ✓ название и назначение основных деталей конструктора Lego Mindstorms EV3;
- ✓ правила подключения к блоку EV3 управления внешних устройств и устройств передачи данных;
- ✓ основные команды языка программирования EV3-G;
- ✓ основные структуры программирования «ветвление», «цикл»;

- ✓ порядок создания алгоритма программы для робота; должны уметь:
 - ✓ проводить сборку робота по образцу и по условиям с применением конструктора;
 - ✓ составлять, отлаживать программы для различных исполнителей, собранных из деталей конструктора;
 - ✓ творчески подходить к решению задачи для робота;
 - ✓ отстаивать свою точку зрения при моделировании робота,
 - ✓ уметь разделять обязанности при работе в малой группе, контролировать действия своей «пары», разрешать конфликты.

должны обладать:

- ✓ интересом к конструированию и моделированию роботов;
- ✓ трудолюбием.

Обучающиеся, освоившие программу второго года обучения

должны знать:

- ✓ правила техники безопасности при работе с конструктором и компьютером;
- ✓ название и назначение основных деталей конструкторов Lego Mindstorms EV3;
- ✓ правила подключения к блокам EV3 внешних устройстви устройств передачи данных;
- ✓ основные команды языков программирования EV3;
- ✓ основные структуры программирования «ветвление», «цикл»;
- ✓ правила создания алгоритма программы для робота;

должны уметь:

- ✓ проводить сборку робота по образцу, по условиям и по замыслу с применением конструктора;
- ✓ составлять, отлаживать и модифицировать программы для разлительной программы.
- ✓ творчески подходить к решению задач;
- ✓ излагать мысли в четкой логической последовательности;
- ✓ отстаивать свою точку зрения;
- ✓ анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- ✓ уметь разделять обязанности при работе в группе, контролировать действия своей группы, разрешать конфликты.

должны обладать:

- ✓ познавательной самостоятельностью и целеустремленностью;
- ✓ аккуратностью и ответственностью в работе.

Обучающиеся, освоившие программу третьего года обучения

должны знать:

- ✓ правила техники безопасности при работе с конструктором и компьютером;
- ✓ название и назначение основных деталей конструкторов;
- ✓ правила подключения к блокам EV3 внешних устройстви устройств передачи данных;
- ✓ основные команды и структуры языков программирования EV3;
- ✓ правила разработки программ для робота;

должны уметь:

- ✓ проводить сборку робота по образцу, по условиям и по замыслу с применением конструктора;
- ✓ составлять, отлаживать и модифицировать программы для разли-

- ✓ творчески подходить к решению задач;
- ✓ излагать мысли в четкой логической последовательности;
- ✓ отстаивать свою точку зрения;
- ✓ анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- ✓ уметь разделять обязанности при работе в группе, контролировать действия своей группы, разрешать конфликты.

должны обладать:

✓ творческой активностью и мотивацией к деятельности.

РАЗДЕЛ 2. КОМПЛЕКС ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИХ УСЛОВИЙ

2.1. Календарный учебный график

Продолжительность учебного года 34 недели

Год обучения	Дата начала	Дата	Количество	Количеств о	Режим занятий
(уровень)	занятий	окончания	учебных	учебных часов	
		занятий	недель		
3 года	01 сентября	31 мая	34 за 1 год	Всего 102 ч	1 раз в неделю
обучения:	2022г.	2023 г	102 за Згода		по 1 часу
2022-2023 г.	01 сентября	31 мая			
2023-2024 г.	2023 г	2024 г.			
2024-2025 г.	01 сентября	31 мая			
	2024 г.	2025 г.			

2.2. Условия реализация программы

Материально-техническое обеспечение:

- КОМПЛЕКТ STEM
- Конструктор программируемых моделей инженерных систем
- Роботизированный манипулятор DOBOT MAGICIAN
- LegoMindstormsEV3 базовый
- LegoMindstormsEV3 ресурсный
- компьютеры, проектор, принтер, колонки, микрофон.

2.3 Формы аттестации

Проверка достигаемых обучающимися образовательных результатов производится в следующих формах:

- текущая диагностика и оценка учителем деятельности школьников:
 - ✓ текущий контроль осуществляется по результатам выполнения практических заданий, мини-проектов. При этом тематические соревнования роботов также являются методом проверки;
 - ✓ взаимооценка учащимися работ друг друга или работ, выполненных в группах;
 - ✓ публичная защита выполненных учащимися творческих работ

(индивидуальных и групповых);

- итоговый контроль осуществляется по итогам выполнения творческого проекта, требующего проявить знания и навыки по ключевым темам;
- ведется организация собственных открытых состязаний роботов: внутри учебной группы, между классами или учебными заведениями, где наиболее ярко проявляются результаты обучения.

Качество ученических образовательных продуктов. оценивается следующими критериями:

- ✓ по соответствию теме проекта;
- ✓ по оригинальности и сложности решения практической задачи;
- ✓ по практической значимости робота;
- ✓ по оригинальности и четкости представления информации в презентации проекта.

Выполненные обучающимися работы включаются в их «коллекцию достижений» (в виде фотографий, видеозаписей, презентаций). Итоговый контроль проводится в конце каждого года обучения. Он имеет форму защиты проектной работы. Данный тип контроля предполагает комплексную проверку образовательных результатов по всем заявленным целям и задачам программы.

Форма аттестации	Формы отслеживания и фиксации образовательных результатов	Форма предъявления и демонстрации образовательных результатов
Собеседование	Аналитическая справка	Аналитический материал
Тестирование	Материал тестирования	Аналитический материал
Анкетирование	Материал анкетирования	Аналитический материал
Проект	Готовая презентация	Защита проекта
Творческая работа	Готовая работа	Защита творческой работы

Опрос	Материал для	Аналитический материал
	опроса	
Интервью	Материал для интервью	Аналитический материал
Самостоятельная работа	Контрольная работа	Аналитический материал
Презентация	Готовая презентация	Готовая презентация

2.4. Оценочные материалы

Для отслеживания и демонстрации образовательных результатов применяются следующие формы: журнал учета работы педагога, собеседование, наблюдение и наблюдений, дневник опрос, самостоятельная работа обучающихся, тестирование, мини-выставки, мини-исследования, мини-проекты, защита проектов, выставки и конкурсы различного уровня; аналитический материал по результатам тестирования, самостоятельных работ обучающихся, мини-выставок, мини-исследований, мини-проектов; фотоматериалы (участие в выставках, готовые работы), мониторинг.

Достижения обучающимися планируемых результатов реализации программы определяются с помощью следующих диагностических методик: для предметных (образовательных) результатов:

- комплект тестов по разделам программы; контрольные упражнения; систематизирующие и обобщающие таблицы; диагностические игры, кроссворды.
- папка достижений обучающихся детского объединения. для личностных и метапредметных результатов:
 - карты личностного роста учащихся детского объединения.

2.5. Методические материалы.

Тематика и формы методических и дидактических материалов, используемых педагогом:

- различные специализированные пособия, оборудование, чертежи, технические рисунки, плакаты моделей; - инструкционные материалы,

технологические карты, задания, упражнения, образцы изделий, наглядные и раздаточные материалы.

Данная программа основана на взаимосвязи процессов обучения, воспитания и развития обучающихся. Основными принципами работы по программе являются:

- принцип научности, который заключается в сообщении знаний об устройстве персонального компьютера, программах кодирования действий роботов и т.д., соответствующих современному состоянию науки;
- принцип доступности выражается в соответствии образовательного материала возрастным особенностям детей и подростков;
- принцип сознательности предусматривает заинтересованное, а не механическое усвоение воспитанниками знаний, умений и навыков;
- принцип наглядности выражается в демонстрации готовых моделей роботов и этапов создания моделей роботов различной сложности;
- принцип вариативности. Некоторые программные темы могут быть реализованы в различных видах технической деятельности, что способствует вариативному подходу к осмыслению этой или иной творческой задачи, исследовательской работы.

Содержание занятий дифференцированно, с учетом возрастных и индивидуальных особенностей детей и подростков. В ней отражены условия для индивидуального творчества, а также для раннего личностного и профессионального самоопределения детей, их самореализации и саморазвития. Приведенный в программе перечень практических занятий является примерным и может быть изменен педагогом в зависимости от желаний, интересов воспитанников. Теоретические и практические занятия проводятся с использованием наглядного материала (технологические карты, разработки занятий, алгоритм выполнения задания, видеоуроки).

Программа «Робототехника» рассчитана на изучение материала под контролем педагога с обязательным освоением основных навыков и приемов практической работы с ПК, соблюдением всех правил по ТБ.

Методы обучения, используемые на занятиях:

- ✓ иллюстративно-объяснительные (восприятие, осмысление И нового запоминание учащимися материала привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения демонстрируемых материалов: фотографий, презентаций, видеороликов);
- ✓ репродуктивные (сборка по технологическим картам, работа с интерактивным практикумом);
- ✓ проблемные (методы проблемного изложения) изучение правил соревнований, создание модели робота для решения поставленной проблемы;
- ✓ исследовательские (проведение экспериментов, например, при изучении видов передач, что лучше «колеса или гусеницы»);
- ✓ метод проектов.

Основные формы работы и виды деятельности обучающихся:

- ✓ Беседа изложение, обсуждение основных понятий, разбор ошибок;
- ✓ Демонстрация различных материалов (схем, фотографий, презентаций, видеоматериалов);
- ✓ Работа в сети Интернет поиск информации, просмотр ресурсов сети по робототехнике;
- ✓ Практикум включает в себя сборку и /или программирование робота;
- ✓ Эксперимент установление опытным путем правильность или ошибочность гипотез, проверка влияния различных условий на работу робота;
- ✓ Мини-проект решение поставленных задач в рамках занятия, имеются варианты решения, заданные инструкции, работа в группах;

- ✓ Проект-проблема самостоятельное решение озвученной проблемы (анализ, проектирование, конструирование, программирование);
- ✓ Творческая работа реализация собственного проекта;
- ✓ Решение задач вычислительные задачи, заполнение таблиц, анализ

2.6. Список литературы

Для учителя

Основная литература:

- 1. Информатика. Программы для образовательных организаций. 2-11 классы / сост. М.Н. Бородин. М.: БИНОМ. Лаборатория знаний, 2015.
- 2. Программа «Робототехника» как базовый образовательный модуль центров технического творчества для детей и молодежи на базе социально ориентированных НКО. Автономная некоммерческая организация «Научно-методический центр «Школа нового поколения». 2013.
- 3. Первый шаг в робототехнику: практикум для 5-6 классов / Д.Г. Копосов. М.: БИНОМ. Лаборатория знаний, 2012.
- 4. Первый шаг в робототехнику: рабочая тетрадь для 5-6 классов / Д.Г. Копосов. М.: БИНОМ. Лаборатория знаний, 2012.
- 5. Филиппов С.А. «Робототехника для детей и родителей» Спб.: Наука, 2013.
- 6. Индустрия развлечений: Перворобот. Книга для учителя и сборник проектов. Институт новых технологий.
- 7. Введение в программирование Lego-роботов на языке EV3-G. Учебное пособие для студентов и школьников: Учебное пособие / В.О. Дженжер, Л.В. Денисова М.: Национальный открытый университет «ИНТУИТ», 2014.

Дополнительная литература:

- 1. http://www.EV3programs.com/ инструкции по сборке роботов.
- 2. фгос-игра.рф Образовательная робототехника, техническое творчество, ФГОС.
- 3. http://wiki.tgl.net.ru/index.php/Образовательная_pобототехника Образовательная робототехника.

- 4. http://nEV3.blogspot.com/ робототехника для школ Ниж. Новгорода.
- 5. http://www.rostovrobot.ru/ секция «Робототехника»